
International Journal of Scientific & Engineering Research Volume 3, Issue 10, October-2012 1
ISSN 2229-5518

IJSER © 2012

http://www.ijser.org

New Evaluation Era of Incremental Sliding
Windows Queries Over Data Streams

Sunil Kumar Sah , Sheo Shankar Prasad

Abstract— Two research efforts have been conducted to realize sliding-window queries in data stream management systems, namely, query

reevaluation and incremental evaluation. In the query reevaluation method, two consecutive windows are processed independently of each other. On

the other hand, in the incremental evaluation method, the query answer for a window is obtained incrementally from the answer of the preceding

window. In this paper, we focus on the incremental evaluation method. Two approaches have been adopted for the incremental evaluation of sliding-

window queries, namely, the input-triggered approach and the negative tuples approach. In the input-triggered approach, only the newly inserted

tuples flow in the query pipeline and tuple expiration is based on the timestamps of the newly inserted tuples. On the other hand, in the negative

tuples approach, tuple expiration is separated from tuple insertion where a tuple flows in the pipeline for every inserted or expired tuple. The negative

tuples approach avoids the unpredictable output delays that result from the input-triggered approach. However, negative tuples double the number of

tuples through the query pipeline, thus reducing the pipeline bandwidth.

Index Terms— Query Reevaluation, Incremental Evaluation, Input Triggered, Tuple Expiration, Negative Tuples.

—————————— ——————————

INTRODUCTION:-

The sliding-window query model is introduced to

process continuous queries in-memory. The main idea is

to limit the focus of continuous queries to only those

data tuples that are inside the introduced window. As

the window slides, the query answer is updated to

reflect both new tuples entering the window and old

tuples expiring from the window.

In the query reevaluation method, the query is re-

evaluated over each window independent from all other

windows. Basically, buffers are opened to collect tuples

belonging to the various windows.

 Once a window is completed (i.e., all the tuples in the

window are received),the completed window buffer is

processed by the query pipeline to produce the complete

window answer. An input tuple may contribute to more

than one window buffer at the same time.

On the other hand, in the incremental evaluation

method, when the window slides, only the changes in

the window are processed by the query pipeline to

produce the answer of the next window. As the window

slides, the changes in the window are represented by

two sets of inserted and expired tuples. Incremental

operators are used in the pipeline to process both the

inserted and expired tuples and to produce the

incremental changes to the query answer as another set

of inserted and expired tuples.

Two approaches have been adopted to support incremental

evaluation of sliding-window queries, namely, the input-

triggered approach and the negative tuples approach. In the

input-triggered approach (ITA for short), only the newly

————————————————

 Sunil Kumar Sah, UDCA, Computer Centre, T.M.Bhagalpur University,
Bhagalpur, India,09504611107, E-mail: sunilsahil@rediffmail.com.

 Sheo Shankar Prasad, UDCA, Computer Centre,, T.M.Bhagalpur
University, Bhagalpur, India,9162380697. E-mail: sheobgp@gmail.com)

mailto:sunilsahil@rediffmail.com
mailto:sheobgp@gmail.com

International Journal of Scientific & Engineering Research Volume 3, Issue 10, October-2012 2
ISSN 2229-5518

IJSER © 2012

http://www.ijser.org

inserted tuples flow in the query pipeline. Query operators

(and the final query output) rely on the timestamps of the

inserted tuples to expire old tuples. However, as will be

discussed in Section 3.1, ITA may result in significant delays in

the query answer. As an alternative, the negative

tuples approach (NTA for short) is introduced as a delay-

based optimization framework that aims to reduce the output

delay incurred by ITA. A negative tuple

is an artificial tuple that is generated for every expired

tuple from the window. Expired tuples are generated by

a special operator, termed EXPIRE, placed at the bottom

of the query pipeline (EXPIRE is a generalization of the

operators SEQ-WINDOW and W-EXPIRE). For each

inserted tuple in the window (i.e., positive tuple), say t,

EXPIRE forwards t to the higher operator in the

pipeline. EXPIRE emits a corresponding negative

tuple t~ once t expires from the sliding window. As the

expired tuple flows through the query pipeline, it undoes

the effect of its corresponding inserted tuple.

Although the basic idea of NTA is attractive, it may not

be practical. The fact that a negative tuple is introduced

for every expired input tuple means doubling the

number of tuples through the query pipeline. In this

case, the overhead of processing tuples through the

various query operators is doubled. This observation

opens the room for optimization methods over the basic

NTA. Various optimizations would mainly focus on two

issues:

1) reducing the overhead of processing the negative

tuples and 2) reducing the number of negative tuples

through the pipeline.

In this paper, we study the realization of the incremental

evaluation approaches in terms of the design of the

incremental evaluation pipeline. Based on this study,

we classify the incremental relational operators into two

classes according to whether an operator can avoid the

processing of expired tuples or not. Then, we introduce

several optimization techniques over the negative

tuples approach that aim to reduce the overhead of

processing negative tuples while avoiding the output

delay of the query answer. The first optimization, termed

the time-message optimization, is specific to the class of

operators that can avoid the processing of negative tuples.

In the time-message optimization, when an operator

receives a negative tuple, the operator does not

perform exact processing but just "passes" a time-

message to upper operators in the pipeline. Whenever

possible, the time-message optimization reduces the

overhead of processing negative tuples while avoiding

the output delay of the query answer.

Furthermore, we introduce the piggybacking approach as

a general framework that aims to reduce the number of

negative tuples in the pipeline. In the piggybacking

approach, negative tuples flow in the pipeline only

when there is no concurrent positive tuple that can do

the expiration. Instead, if positive tuples flow in the

query pipeline with high rates, then the positive tuples

purge the negative tuples from the pipeline and are

piggybacked with the necessary information for

expiration. Alternating between negative and

piggybacked positive tuples is triggered by

discovering fluctuations in the input stream

characteristics that are likely to take place in streaming

environments. Basically, the piggybacking approach

always achieves the minimum possible output delay

independent from the stream or query characteristics. In

International Journal of Scientific & Engineering Research Volume 3, Issue 10, October-2012 3
ISSN 2229-5518

IJSER © 2012

http://www.ijser.org

general, the contributions of this paper can be

summarized as follows:

1. We study, in detail, the realization of the incremental

evaluation approach in terms of the design of the

incremental evaluation pipeline. Moreover, we

compare the performance of the two approaches, IT A

and NTA, for various queries. This comparison helps

identify the appropriate situations in which to use each

approach.

2. We give a classification of the incremental operators

based on the behavior of the operator when

processing a negative tuple. This classification

motivates the need for optimization techniques over the

basic NTA.

3. We introduce the time-message optimization techni-

que that aims to avoid, whenever possible, the

processing of negative tuples while avoiding the

output delay of the query answer.

4. We introduce the piggybacking technique that aims to

reduce the number of negative tuples in the query

pipeline. The piggybacking technique allows the

system to be stable with fluctuations in input arrival

rates and filter selectivity.

5. We provide an experimental study using a

prototype data stream management system that

evaluates the performance of the ITA, NTA, time-

message, and piggybacking techniques.

2 PRELIMINARIES

In this section, we discuss the preliminaries for sliding

window query processing. First, we discuss the semantics

of sliding-window queries. Then, we discuss the pipelined

execution model for the incremental evaluation of sliding

window queries over data streams.

2.1 Sliding-Window Query Semantics

A sliding-window query is a continuous query over n input

data streams, S1 to Sn. Each input data stream Sj is

assigned a window of size wj. At any time instance T, the

answer to the sliding-window query is equal to the answer

of the snapshot query whose inputs are the elements in the

current window for each input stream. At time T, the

current window for stream Si contains the tuples arriving

between times T-wi and T. The same notions of semantics

for continuous sliding-window queries are used in other

systems. In our discussion, we focus on the time-based

sliding window that is the most commonly used sliding

window type. Input tuples from the input streams, S1 to

Sn, are time-stamped upon the arrival to the system. The

timestamp of the input tuple represents the time at which

the tuple arrives to the system. The window wi associated

with stream Si represents the lifetime of a tuple t from Si.

Handling timestamps. A tuple t carries two timestamps, t’s

arrival time, ts, and t’s expiration time, Ets. Operators in

the query pipeline handle the timestamps of the input and

output tuples based on the operator’s semantics. For

example, if a tuple t is generated from the join of the two

tuples t1(ts1, Ets1) and t2(ts2; Ets2), then t will have ts=

max(ts1, ts2) and Ets= min(Ets1, Ets2). In this paper, we use

the CQL construct RANGE to express the size of the

window in time units.

2.2 Data Stream Queuing Model

Data stream management systems use a pipelined queuing

model for the incremental evaluation of sliding-window

queries. All query operators are connected via first-in-first-

out queues. An operator, p, is scheduled once there is at

least one input tuple in its input queue. Upon scheduling, p

processes its input and produces output results in p’s

International Journal of Scientific & Engineering Research Volume 3, Issue 10, October-2012 4
ISSN 2229-5518

IJSER © 2012

http://www.ijser.org

output queue. The stream SCAN (SSCAN) operator acts as

an interface between the streaming source and the query

pipeline. SSCAN assigns to each input tuple two

timestamps, ts, which is equal to the tuple arrival time, and

Ets, which is equal to ts þ wi. Incoming tuples are

processed in increasing order of their arrival timestamps.

Stream query pipelines use incremental query operators.

Incremental query operators process changes in the input

as a set of inserted and expired tuples and produce the

changes in the output as a set of inserted and expired

tuples. Algebra for the incremental relational operators has

been introduced in the context of incremental maintenance

of materialized views (expiration corresponds to deletions).

In order to process the inserted and expired tuples, some

query operators (e.g., Join, Aggregates, and Distinct) are

required to keep some state information to keep track of all

previous input tuples that have not expired yet.

3 PIPELINED-EXECUTION OF SLIDING-

WINDOW QUERIES

In this section, we discuss two approaches for the

incremental evaluation of sliding-window queries, namely,

ITA and NTA. As the window slides, the changes in the

window include insertion of the newly arrived tuples and

expiration of old tuples. ITA and NTA are similar in

processing the inserted (or positive) tuples but differ in

handling the expired (or negative) tuples. Basically, the

difference between the two approaches is in: 1) how an

operator is notified about the expiration of a tuple, 2) the

actions taken by an operator to process the expired tuple,

and 3) the output produced by the operator in response to

expiring a tuple. In this section, we discuss how each

approach handles the expiration of tuples along with the

drawbacks of each approach.

3.1 The Input-Triggered Approach (ITA)

The main idea in ITA is to communicate only positive

tuples among the various operators in the query pipeline.

Operators in the pipeline (and the final query sink) use the

timestamp of the positive tuples to expire tuples from the

state. Basically, tuple expiration in ITA is as follows: 1). An

operator learns about the expired tuples from the current

time T that is equal to the newest positive tuple’s

timestamp. 2) Processing an expired tuple is operator-

dependent. For example, the join operator just purges the

expired tuples from the join state. On the other hand, most

of the operators (e.g., Distinct, Aggregates, and Set-

difference) process every expired tuple and produce new

output tuples. 3) An operator produces in the output only

positive tuples which are a result of processing the expired

tuple (if any). The operator attaches the necessary time

information in the produced positive tuples so that upper

operators in the pipeline perform the expiration

accordingly.

 A problem arises in ITA if the operator does not

produce any positive tuples in the output although the

operator has received input positive tuples and has expired

some tuples from the operator’s state. In this case, the

upper operators in the pipeline are not notified about the

correct time information, which results in a delay in

updating the query answer. Note that upper operators in

the pipeline should not expire any tuples until the operator

receives an input tuple from the lower operator in the

pipeline. Operators cannot voluntarily expire tuples based

on a global system’s clock. Voluntary expiration based on a

global clock can generate incorrect results because an

expired tuple, t1, may co-exist in the window with another

tuple, t2, but t2 may get delayed at a lower operator in the

pipeline. The delay in the query answer is a result

of not propagating the time information that is needed to

International Journal of Scientific & Engineering Research Volume 3, Issue 10, October-2012 5
ISSN 2229-5518

IJSER © 2012

http://www.ijser.org

expire tuples. The delay is unpredictable and depends on

the input stream characteristics. In a streaming

environment, a delay in updating the answer of a

continuous query is not desirable and may be interpreted

by the user as an erroneous result. As it is hard to model

the input stream characteristics, the performance of the

input-triggered approach is fluctuating. Example. Consider

the query Q1 “Continuously report the number of favorite

items sold in the last five time units.” Notice that, even if

the input is continuously arriving, the filtering condition,

favorite items, may filter out many of the incoming stream

tuples. In this case, the join operator will not produce many

positive tuples. As a result, the upper operators in the

pipeline (e.g., COUNT in Q1) will not receive any

notification about the current time and, hence, will not

expire old tuples.

Fig. 1 illustrates the behavior of ITA for Q1. The timelines S1

and S2 correspond to the input stream and the output of

JOIN, respectively. S3 and C represent the output stream

when using ITA and the correct output, respectively. The

window w is equal to five time units. Up to time T4, Q1

matches the correct output C with the result 4. At T5, the

input “2” in S1 does not join with any item in the table

Favorite Items. Thus, COUNT is not scheduled to update

its result. S3 will remain 4 although the correct output C

should be 3 due to the expiration of the tuple that arrived at

time T0. Similarly, at T6, S3 is still 4 while C is 2 (the tuple

arriving at time T1 has expired). S3 keeps having an

erroneous output until an input tuple passes the join and

triggers the scheduling of COUNT to produce the correct

output. This erroneous behavior motivates the idea of

having a new technique that triggers the query operators

based on either tuple insertion or expiration.

Figure 1.

 (a) (b)

Input-triggered evaluation (a) Query Q1 with the

query pipeline. (b) Execution timeline.

Figure 2.

(a) (b)

Negative tuples evaluation (a) Query Q1 with query pipeline.

(b) Execution timeline.

3.2 Negative Tuples Approach (NTA)

The main goal of NTA is to separate tuple expiration from

the arrival of new tuples. The main idea is to introduce a

new type of tuples, namely, negative tuples, to represent

expired tuples. A special operator, EXPIRE, is added at the

bottom of the query pipeline that emits a negative tuple for

International Journal of Scientific & Engineering Research Volume 3, Issue 10, October-2012 6
ISSN 2229-5518

IJSER © 2012

http://www.ijser.org

every expired tuple. A negative tuple is responsible for

undoing the effect of a previously processed positive tuple.

For example, in time-based sliding-window queries, a

positive tuple t+ with timestamp T from stream Ij with a

window of length wj will be followed by a negative tuple t –

at time T + wj. The negative tuple’s timestamp is set to T +

wj. Upon receiving a negative tuple t – , each operator in the

pipeline behaves accordingly to delete the expired tuple

from the operator’s state and produce outputs to notify

upper operators of the expiration.

3.3 Handling Delays Using Negative Tuples

Fig. 2b gives the execution of NTA for the example in Fig.

2a (the negative tuples implementation of the query in Fig.

1a). At time T5, the tuple with value 4 expires and appears

in S1 as a negative tuple with value 4. The tuple 4- joins

with the tuple 4 in the Favorite Items table. At time T5,

COUNT receives the negative tuple 4-. Thus, COUNT

outputs a new count of 3. Similarly, at time T6, COUNT

receives the negative tuple 5 – and the result is updated.

The previous example shows that NTA overcomes the

output delay problem introduced by ITA because tuple

expiration is independent from the query characteristics.

Even if the query has highly selective operators at the

bottom of the pipeline, the pipeline still produces timely

correct answers. On the other hand, if the bottom operator

in the query pipeline has low selectivity, then almost all the

input tuples pass to the intermediate queues. In this case,

NTA may present more delays due to the increase of

waiting times in queues.

3.4 Invalid Tuples

In ITA, expired tuples are not explicitly generated for every

expired tuple from the window, but some tuples may

expire before their Ets due to the semantics of some

operators (e.g., set-difference). we refer to tuples that expire

out-of-order as invalid tuples. Operators in ITA process

invalid tuples in the same way as negative tuples are

processed by NTA and produce outputs so that other

operators in the pipeline behave accordingly. This means

that, even in ITA, some negative tuples may flow in the

query pipeline.

4. Conclusions

 In this paper, we focus on the two approaches for

incremental query evaluation, namely, the input-triggered

approach (ITA) and negative tuples approach (NTA). We

study the realization of the incremental evaluation pipeline

in terms of the design of the incremental relational

operators. We show that, although NTA avoids the

shortcomings of ITA (i.e., large output delays), NTA suffers

from a major drawback. Negative tuples double the

number of tuples in the query pipeline; hence, the pipeline

bandwidth is reduced to half.

5 ACKNOWLEDGEMENT

I would like to thank the staff of ISI Kolkatta, for

their valuable support.

6. REFERENCES

1. Arasu and J. Widom, “Resource Sharing in

Continuous Sliding- Window Aggregates,” Proc.

Int’l Conf. Very Large Data Bases (VLDB), 2004.

2. Ayad and J.F. Naughton, “Static Optimization of

Conjunctive Queries with Sliding Windows over

Infinite Streams,” Proc. ACM SIGMOD Conf., 2004.

3. DATAR, M., GIONIS, A., INDYK, P., AND MOTWANI, R.

2002. Maintaining stream statistics over sliding

windows. In Proceedings of the Annual ACM-SIAM

Symposium on Discrete Algorithms (SODA), 635-644.

International Journal of Scientific & Engineering Research Volume 3, Issue 10, October-2012 7
ISSN 2229-5518

IJSER © 2012

http://www.ijser.org

4. Li, J., MAIER, D., TUFTE, K., PAPADIMOS, V., AND

TUCKER, P. A. 2005. Semantics and evaluation tech-

niques for window aggregates in data streams. In

Proceedings of the ACM SIGMOD International

Conference on Management of Data, 311-322.

